

Problem 1. folded (serpentine) springs for torsion

Serpentine springs

- take less area, and
- allow for more design freedom for different modes (but adds more challenges)
- Typically used either in bending or in torsion
- Need to consider bending stiffness on all axes!

Accelerometer beam (ADXL202, one corner)

Center Member

Stopper

Stopper

Self Test Fingers

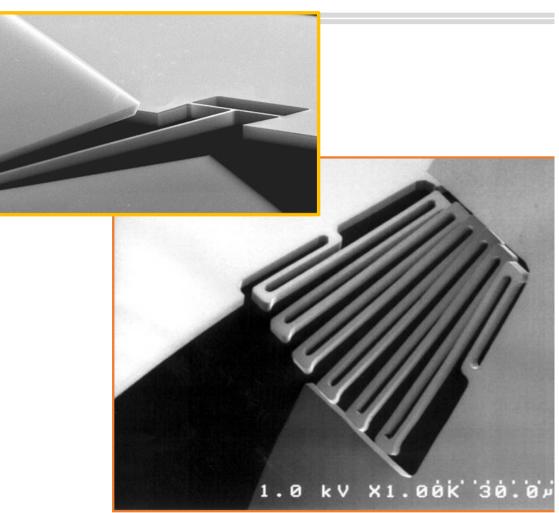
Anchor

Fixed Fingers

Moveable Fingers

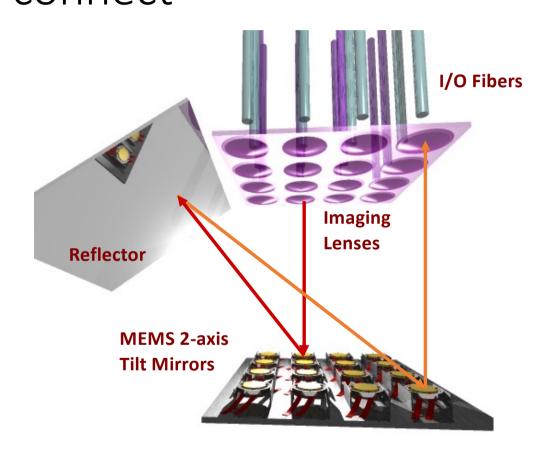
Anchor

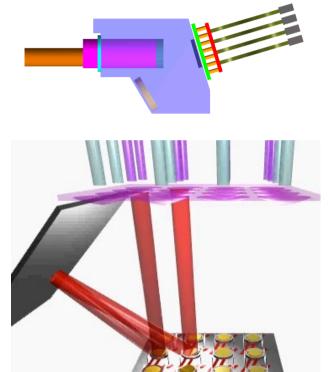
Moveable Fingers



Lucent technologies

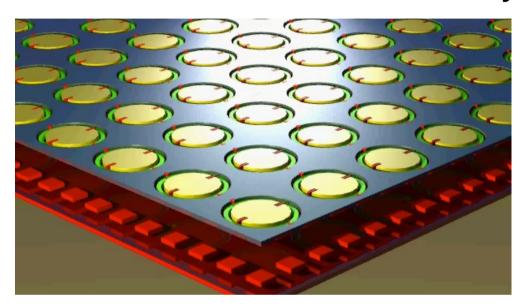
Example: MEMS mirror for Optical cross-connect





Beam scanning during connection setup.

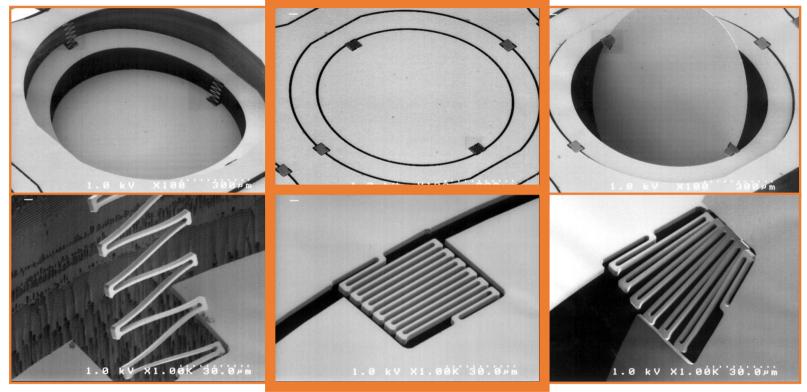
Single-Crystal Silicon (SOI), electrostatic drive 1296 Micromirror Array



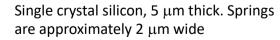
Voltage-actuated mirror deflection

- 1296 mirror array
- SOI

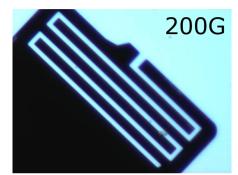




unstressed silicon springs

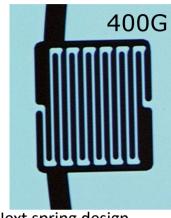


Engineering Si springs for 1000 G (0.5 ms) shock tolerance: need resistance in 3 directions... all spring have the same torsional stiffness.

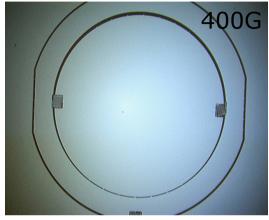


 First generation of mirrors failed at 200G

<u>Failure mode</u>: cracking of the spring at the 90° corner



•Next spring design incorporated widening at the 90° corners to suppress observed failure mode.



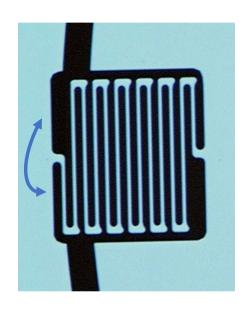
• Failure mode at 400G: due to soft lateral modes, mirror and/or gimbal slides under the gimbal and/or handle and gets stuck



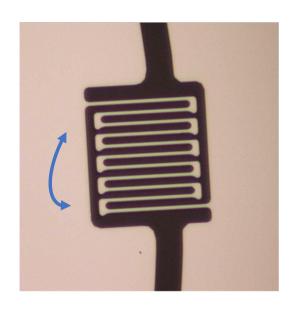
- •Final design of 5um thick mirrors had 90° rotated serpentine springs for stiffer lateral modes. Shows excellent mechanical shock resistance.
- •All tested mirrors remained functional after repeated 1000G mechanical shocks

Best beam design for one mode may be poor choice for other modes...

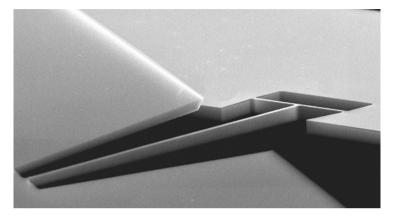
Different springs for torsional support

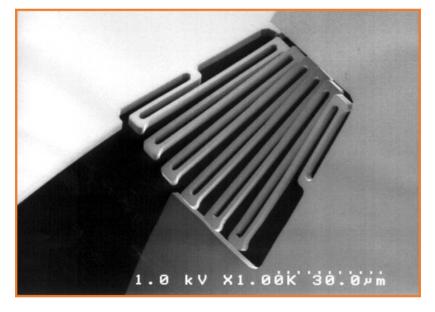


Beams in **bending** (when mirror tilts)



Beams in **torsion** (when mirror tilts)





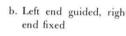
Spring constant in bending of a simple cantilever...

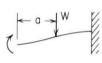
Table 4.1 The linear stiffness coefficient k of some of the common structure configurations in MEMS. The unit of k for all loading types is force/length. For wide beams (b > 5h) of cases 3–9, replace E with $E/(1 - v^2)$, where v is the Poisson's ratio. When calculating the natural frequency of a flexible structure alone, use an "effective" mass for the structure

1) Axially loaded bar	E, A, L $\downarrow_{F, x}$	$k = \frac{EA}{L}$ E: Modulus of elasticity A: Area of cross section L: Length of bar
2) Rod under torque		$k = \frac{GJ_p}{L}$ $J_p: \text{Polar moment of inertia of the cross section}$ $G: \text{Shear modulus}$ $L: \text{Length of rod}$
3) Cantilever beam under point load at the tip	E, x	$k = \frac{3EI}{L^3}$ E: Modulus of elasticity I: Moment of inertia of the cross section L: Length of bar
4) Cantilever beam under uniformly distributed pressure	P L, I, E	$k = \frac{8EI}{L^3}$

Boundary conditions matter...

reference no.	Boundary values	Selected maximum values of moments and deformations		
1a. Left end free, right end fixed (cantilever)	$R_A = 0 \qquad M_A = 0 \qquad \theta_A = \frac{W(l-a)^2}{2EI}$	Max $M = M_B$; max possible value $= -Wl$ when $a = 0$		
k- a → J W E	$y_A = \frac{-W}{6EI}(2l^3 - 3l^2a + a^3)$	Max $\theta = \theta_A$; max possible value $= \frac{Wl^2}{2EI}$ when $a = 0$		
<u> </u>	$R_B = W M_B = -W(l-a)$ $\theta_B = 0 y_B = 0$	Max $y = y_A$; max possible value $= \frac{-Wl^3}{3EI}$ when $a = 0$		
	$v_B - v$ $y_B = v$			





b. Left end guided, right
$$R_A=0$$
 $M_A=\frac{W(l-a)^2}{2l}$ $\theta_A=0$

$$y_A = \frac{-W}{12EI}(l-a)^2(l+2a)$$
 $R_B = W \qquad M_B = \frac{-W(l^2-a^2)}{2l}$

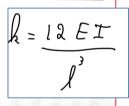
$$R_B = W \qquad M_B = \frac{1}{2l}$$

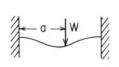
$$\theta_B = 0$$
 $y_B = 0$

$$\text{Max} + M = M_A$$
; max possible value $= \frac{Wl}{2}$ when $a = 0$

$$\text{Max} - M = M_B$$
; max possible value $= \frac{-Wl}{2}$ when $a = 0$

Max
$$y = y_A$$
; max possible value $= \frac{-Wl^3}{12EI}$ when $a = 0$





1d. Left end fixed, right end
$$R_A = \frac{W}{l^3}(l-a)^2(l+2a)$$

$$M_A = \frac{-Wa}{l^2}(l-a)^2$$

$$\theta_A = 0 y_A = 0$$

$$R_B = \frac{Wa^2}{l^3} (3l - 2a)$$

$$M_B = \frac{-Wa^2}{l^2}(l-a)$$

$$\theta_B = 0 \qquad y_B = 0$$

Max +
$$M = \frac{2Wa^2}{l^3}(l-a)^2$$
 at $x = a$; max possible value = $\frac{Wl}{8}$ when $a = \frac{l}{2}$

$$\operatorname{Max} - M = M_A$$
 if $a < \frac{l}{2}$; max possible value $= -0.1481 Wl$ when $a = \frac{l}{3}$

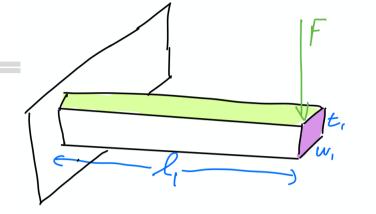
Max
$$y = \frac{-2W(l-a)^2a^3}{3EI(l+2a)^2}$$
 at $x = \frac{2al}{l+2a}$ if $a > \frac{l}{2}$; max possible value $= \frac{-Wl^3}{192EI}$ when $x = a = \frac{l}{2}$

Resonance frequency depends on edge (support) conditions

Table 1: Fundamental Frequency vs. Geometry for SiC, [Si], and (GaAs) Mechanical R

	Resonator Dimensions $(L \times w \times t, in \mu m)$			•
Boundary Conditions	$100 \times 3 \times 0.1$	$10 \times 0.2 \times 0.1$	$1 \times 0.05 \times 0.05$	
Both Ends Clamped or Free	120 KHz [77] (42)	12 MHz [7.7] (4.2)	590 MHz [380] (205)	40x stiffness
Both Ends Pinned	<i>53 KHz</i> [34] (18)	5.3 MHz [3.4] (1.8)	260 MHz [170] (92)	8x stiffness
Cantilever	19 KHz [12] (6.5)	1.9 MHz [1.2] (0.65)	93 MHz [60] (32)	

[&]quot;Nanoelectromechanical Systems", M. L. Roukes, Technical Digest of the 2000 Solid-State Sensor and Actuator Workshop, Hilton Head Isl., 6/4-8/2000.



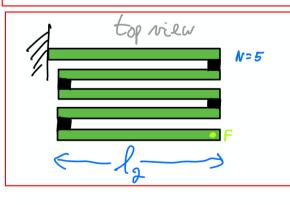
$$k_1 = \frac{3EI_1}{l_1^3}$$

$$I_1 = \frac{1}{12} w_1 t_1^3$$



$$k_1 = \frac{3EI_1}{l_1^3}$$

Single beam

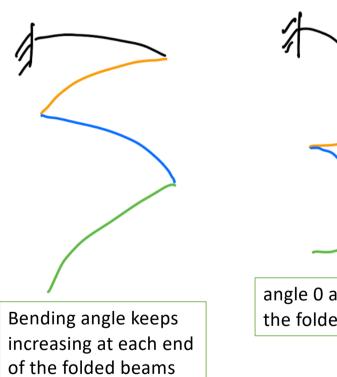


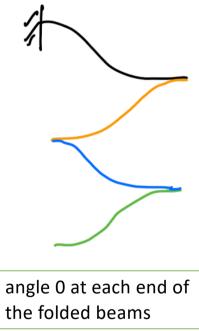
Serpentine beam, pure bending

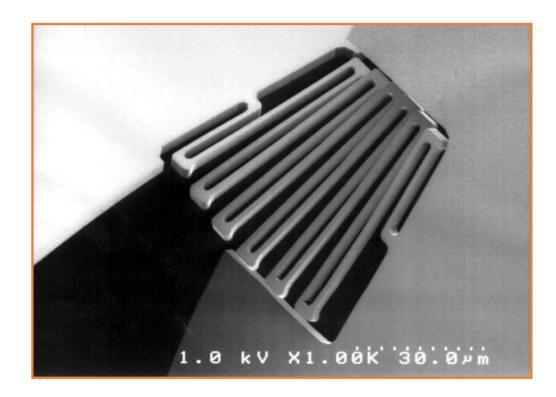
Springs in series?

How do they deform?

Serpentine beam. What assumptions to make about bending shape?

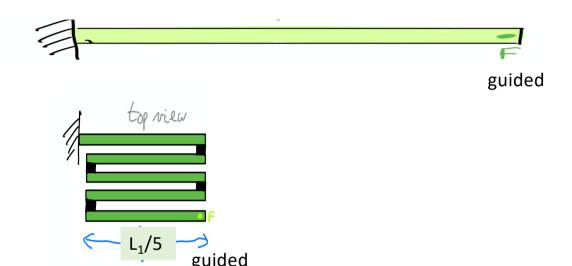






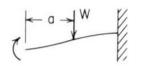
Problem 1. Spring design, one end fixed, one end guided

- We replace a single cantilever of length L₁ with a 5x shorter spring (L₂ = L₁ /5). We want the same total bending stiffness for out of plane motion (force in z direction)
- 1. Write an expression linking w and t and the number of serpentine segments N
- 2. Make 3 reasonable spring designs to get k=1 N/m for L₂=100 µm and material is Silicon (you find the values)



$$k_1 = \frac{12E I_2 I}{l_2^2 N}$$
T in series

 b. Left end guided, right end fixed



$$k = IN/m \qquad L_2 = 100 \, \mu \qquad E = 160 \, GRa$$

$$k_3 = E \frac{\omega t^3}{L^3} \frac{1}{N}$$

$$\omega t^3 = \frac{N \, k \, L^3}{E} \qquad t = \frac{3}{V} \frac{N \, k \, L^3}{E \, \omega}$$

$$t = \sqrt[3]{\frac{1}{\omega}} \sqrt[3]{\frac{5 \cdot 1 \cdot [100^{-4}]^3}{160 \cdot 10^9}}$$

$$t = 3.15^{6}. (\omega)^{-1/3}$$
 or $\omega = \left[\frac{3.15^{6}}{t}\right]^{3}$
 $\omega = 125 \mu m$ $t = 0.6 \mu m$ (a)
 $\omega = 15 \mu m$ (b)
 $\omega = 1 \mu m$ (c)
 $\omega = 1 \mu m$ (c)

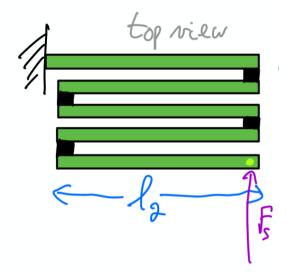
$$\omega = 1 \mu m$$
 $t = 3 \mu m$ (c)

$$\omega = \left[\frac{3.10^{-1}}{t}\right]^{2}$$

$$L = 100 \mu m$$

EPFL

- 4. Express the side bending stiffness for force in y direction vs. geometry
- 5. For the 3 reasonable spring designs that gave 1N/m in z direction, what stiffness do you get in the y direction?



4. Side Bending. still N springs in parallel. but Iside & Itoo

- 3.2, 10⁻² wt

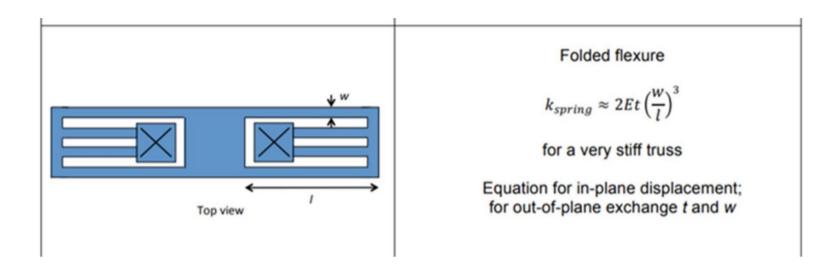
$$\mathcal{L} = \frac{12E I_2 I}{L^3 N} = \frac{E wt}{N L^3}$$

$$= \frac{(60.00)^9}{(100.10^{-6})^3} \cdot \frac{1}{5} \cdot \frac{(10)^9}{\sin \mu n}$$

5

$$W = 125 \mu m$$
 $t = 0.6 \mu m$ (a)
 $W = 15 \mu m$ $t = 1.2 \mu m$ (b)
 $W = 1 \mu m$ $t = 3 \mu m$ (c)

design (a) offers much better lateral stiffness



See Henein Micro-200 to compute *k*

